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Part 1. Exact 1 : 2 resonance 
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The linear stability of two superimposed layers of fluid, heated from below and 
separated by a thin conducting plate, is investigated. It is shown that when the ratio 
of the depths of the layers is close to 1 : 2, two distinct modes of convection can occur 
with preferred horizontal wavenumber in the ratio 1 : 2. The nonlinear evolution of 
a disturbance consisting of both modes is considered, and it is shown that travelling 
waves are the preferred mode of nonlinear convection for a wide range of parameter 
values. Other possible types of behaviour, including modulated waves and an 
attracting homoclinic trajectory, are also described in detail. 

1. Introduction 
The nonlinear interaction of different spatial structures in convection is a problem 

whose study has a long history, but which has experienced a resurgence recently, in 
the attempt to understand the transition to chaos in large fluid layers. The work of 
Rayleigh (1916) showed that a fluid layer heated from below first became unstable 
to motions with a definite horizonta,l wavenumber : early investigations of the 
nonlinear development of convection (e.g. Malkus & Veronis 1958) were founded on 
the idea that motions with this preferred horizontal scale (or one nearby) would 
dominate the dynamics. Indeed, experiments in a fluid layer (Busse & Whitehead 
1971) in which motions of a given horizontal scale could be forced initially, and were 
then found to be stable well into the nonlinear regime, increased the perceived 
importance of cellular convection patterns, a t  least in the neighbourhood of the 
stability boundary. However, the results of experiments ulithou,t initial periodic 
forcing in a large-aspect-ratio layer (for example, Ahlers & Behringer 1978) showed 
that regular cellular patterns were metastable a t  best, with convection generally 
being quite disordered and exhibiting persistent time dependence even very close to 
the instability threshold. Theories of these disordered patterns have been attempted 
in terms of modulations of the amplitudes and phases of the rolls (Newell & 
Whitehead 1968; Cross & Newell 1984; Fauve 1985) but these theories all rely on the 
dominating influence of the preferred wavenumber. The modulation theory, 
moreover, takes no account of the absolute value of the phase of the underlying 
(nearly) cellular structure. Pomeau (1984) has shown that in cert>ain cases (e.g. of 
abrupt changes in roll orientation) interactions that involve t'he absolutc phase 
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become important. Furthermore, very recent work of Chat6 & Manneville (1987) on 
a model problem (the so called Kuramoto-Sivashinsky equation) 

a f= -af-f””-pf”+fl’, [ f .  = Gf(X’ t ) ]  

(which can be thought of as a model for convective systems with a preferred 
wavenumber near the onset of instability) have demonstrated the crucial importance 
of travelling waves, involving several different wavenumbers, in creating the kind of 
spatial irregularity that by analogy is held to model the ‘spatial intermittency’ 
characteristic of large systems far from equilibrium. 

It thus seems important to understand the nonlinear interaction of convective 
modes of different horizontal wavenumber. Analyses in the weakly nonlinear regime 
have been carried out by Segel (1962, 1965) and more recently by Knobloch & 
Guckenheimer (1982) and Busse & Or (1986). These papers all treat Boussinesq 
convection with symmetric thermal and mechanical boundary conditions, and show 
that the interaction between the different horizontal modes (provided the assumed 
horizontal scale is such that two (or perhaps more) modes become unstable 
simultaneously) can be described by amplitude equations whose nonlinear interaction 
terms are cubic in the amplitudes a t  leading order, and take the form 

Ai = pi At  -Ai  C cii /Aj),, 
i 

where the indices i, j run over all the unstable modes. Thus only the moduli of the 
A, are coupled, and their relative phases not determined. More recently F. H. Busse 
(1987, personal communication), has noted that if the Boussinesq approximation is 
relaxed so as to allow, for example, non-uniform viscosity and thermal conductivity 
then extra terms quadratic in the amplitude can appear in the equivalent of (1.2) in 
the special case where two modes with horizontal wavenumbers in the ratio 1 : 2 
become unstable almost simultaneously. These quadratic terms do involve the 
relative phases of A ,  and A,  and so provide a prototypc model for the study of the 
sort of non-adiabatic effects whose importance Pomeau correctly emphasized. 
Dangelmayr (1986) was the first to discuss these augmented equations (5.1). Jones 
& Proctor (1987) gave further results, being motivated by a problem in thermal 
convection. Independently, Armbruster, Guckenheimer & Holmes (1987) considered 
the same equations from a group-theoretic point of view, and obtained many 
mathematical results similar to those given in the present paper. Here, besides 
presenting a new experimental prototype, we give a full treatment of the derivation 
of the results presented by Jones & Proctor (1987). 

The interactions of these resonant modes in a single layer of fluid depend on careful 
selection of the allowed wavenumbers. This can be achieved in an annular or 
cylindrical geometry : but then the interesting effects of amplitude and phase 
modulation cannot be investigated. In  a large-aspect-ratio fluid layer the bifurcations 
leading to travelling waves can only occur when the convection is fully nonlinear, 
and analytical methods will not suffice. We therefore decided to study two 
superimposed layers of fluid, thermally but not mechanically coupled. The top 
boundary of the upper layer and the bottom boundary of the lower layer are 
supposed maintained a t  fixed temperature, while the thin dividing plate can be 
heated (for example by an electric current), so that the temperature gradients in each 
layer may be independently varied. Since different working fluids may be used in 
each layer, and the relative depths of each layer may be varied, this system has 
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potentially rich behaviour. In  $ 2  we set up the equations for the system, and in $ 3  
solve t,he linearized stability problem. It is shown that parameter values can be 
chosen so that two distinct modes of convection, with preferred horizontal 
wavenumbers in the ratio 1 :2 ,  bifurcate simultaneously. I n  $4 we derive the 
nonlinear evolution equation for the amplitudes of these two modes, assuming that 
there is no modulation. The more complicated dynamics that ensues when the 
preferred modes are not quite in the ratio 1 : 2  will be deferred to a later paper. 
Section 5 gives a full discussion of the evolution equations, building on and extending 
the earlier work of Dangelmayr. I n  $6 we analyse the different kinds of time- 
dependent behaviour that can occur, and the important consequences of the presence 
of imperfections in the system. Finally in a conclusion we examine the implications 
of the analysis of the evolution equations in $$5 and 6 on our physical problem, and 
consider the relevance of our findings to other problems. 

2. Formulation of the problem 
In  this and the two subsequent sections we give a full description of the dynamics 

of a two-layer convection problem. The main thrust of the analysis is the derivation 
of the evolution equations (5.1). Readers more interested in the general properties of 
solutions of that equation may pass directly to $ 5 ,  

We consider two horizontal infinite layers of fluid, one above the other, separated 
by a thin, conducting, heated plate (see figure 1) .  We can have either two different 
fluids in the two layers or the same fluid, but we shall derive the equations on the 
basis of two different fluids and treat the one-fluid situation as a special case. We take 
the depth of the lower layer to be d,  and of the upper layer to be d / D ,  so that D is 
the depth ratio of the two layers. We assume that the lower surface is held constant 
a t  temperature Tb and the upper surface a t  T,, Tb > T,. The intermediate plate at 
z = d supplies a uniform heat flux F,. The heat flux through the system is controlled 
by two adjustable parameters, the heat flux F, and the temperature difference 
between the lower and upper boundaries Tb-T,. The presence of two adjustable 
parameters is important because, as we shall see below, the most interesting 
phenomena occur when the two layers are both near the threshold of the onset of 
convection. Both parameters have to be correctly adjusted to achieve this situation. 

We assume the fluids have kinematic viscosity vk, thermal diffusivity K~ and 
coefficient of expansion ak, k = 1 referring to the lower layer and k = 2 to the upper 
layer. Because of the jump in the heat flux a t  the intermediate plate, whose 
temperature we take to be T,, we have 

so that 
K1 Tb + D K 2  T, +Fo d 

K~ + D K ~  
T, = 

It is clear that T, will exceed Tb if F, > (Tb-T,) DK,/d. If F, exceeds this value, the 
lower layer will be stably stratified, which is not the situation we are interested in 
here, so we shall assume that Yo c (Tb-T,) DK2/d, so that Tb > T, > T,. We can now 
define Rayleigh numbers for the two layers: 
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FIGURE 1. Sketch of the experiment. 

As the flux increases from 0 to (T,-T,)DK,/d, R, decreases steadily while R, 
increases steadily. Provided oll Ki  v 2  D4 , KI v1 

it is possible to choose a value of F, so that R, = R,. As we see below, the condition 
for the simultaneous onset of convection in both layers is not exactly a t  R, = R,, 
because of the thermal coupling between the layers through the intermediate plate, 
but the numerical results below indicate that simultaneous onset generally occurs 
with R, and R, fairly close. We note that in the case where the upper and lower fluids 
are the same, (2.3) reduces to D > 1, i.e. we need the lower layer of fluid to be thicker 
than the upper layer. 

We assume that the motion occurs as two-dimensional rolls. There are, of course, 
well-known experimental difficulties in achieving two-dimensional rolls because of 
the degeneracy of pattern selection at critical Rayleigh number. The analysis is 
considerably simpler for two-dimensional rolls than for other configurations. 

Suitably scaled Navier-Stokes equations can be written in a Cartesian co- 
ordinate system with gravity in the negative z-direction and in which the velocity 

(2.3) 

u = ( - a+/az, 0, a+px), 

W k  = - V"W (2.6) 
Here E = 1,  2 refers to the equations in the two layers. P, = v , / K ,  and P, = v , /K ,  are 
the Prandtl numbers of the two layers, C, = 1 and C, = KI/K2, the conductivity ratio 
of the two fluids. R, and R, are the two Rayleigh numbers defined in (2.2) and 
K ,  = 1 ,  K ,  = D4, D being the depth ratio of the layers. 

With the same scaling, the boundary conditions become 

de, dB 
dz dz 8, = GO,, C2- = G 2  on z = d,  (2.7) 

where G = D4R, K ,  v 2  cc,/R, K ,  v1 a, 
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There are twelve boundary conditions, so the problem is of twelfth order. 
The parameter G will vary considerably depending on the experimental 

configuration. If D is substantially greater than 1 (e.g. D close to 2 as for the 2 :  1 
resonance) simultaneous onset in the two layers can be achieved in different ways 1 

if the same fluid is used in both layers, the temperature gradient in the upper layer 
must be approximately D4 times the gradient in the lower layer. This requires the 
flux F, to be quite close to the critical value (T,-T,) DK,/d, and the parameter G will 
also be close to 0‘. Alternatively, we could use a more viscous fluid in the lower layer 
than in the upper layer, so that simultaneous criticality can be achieved even though 
the temperature gradients are comparable. In this case the flux F, would be 
comparatively small, and used to ‘fine tune’ to  get close to the point of simultaneous 
onset. If the two fluids had a1 K ,  M a, K ~ ,  and viscosities such that v1/v2 was of the 
same order of magnitude as D4, then we would have G x 1. So in the first case G 
would be of order D4 and in the second of order 1. With D x 2 or M 3 as in the strong- 
resonance cases, the differences are substantial, and we expect rather different 
nonlinear behaviour in the two cases. 

3. Linear theory 
The linearized form of (2.4)-(2.6) can be written 

together with the boundary conditions (2.7) and (2.8). However, we can simplify the 
linear problem by scaling out the parameter G which occurs in the boundary 
conditions. We introduce cP1 = O,, $, = GO,, so that cPk also satisfy 

V6cPk = RkKk- 
a x 2  ’ 

k = 1 , 2 ,  

but now the boundary conditions (2.7) are replaced by 

while the boundary conditions (2.8) are not affected by the scaling. So the only 
parameters to come into the linear problem are B,, R,, D and C, the conductivity 
ratio ( K ,  = D4). From now on, we assume the conductivity ratio C, = I. 

We look for solutions of (3.2) of the form 

#k = f k ( z )  eiaX (3.4) 

corresponding to two-dimensional rolls of horizontal wavenumber a. The functions 
fk(z) can be written 

6 

f k ( z )  akj exp (ykjz)? = 1, 2, (3.5) 

(a2+yij)3 = R k K k a 2 ,  K = 1 ,  2. (3.6) 

j=1 

whcrc the ak, and the yk j  are 12 complex constants; the yk j  are the roots of 

The akj are determined, up to an arbitrary multiplier, by the 12 boundary 
conditions. 
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FIGURE 2. Neutral stability curve R,(a) for the  case D = 3 and r = 1.2. 

D 
1.5510 
1.5641 
1.6316 
1.7027 
1.857 1 
2.0977 
2.1250 
2.3333 
2.7037 
3.0000 

r 

1.1392 
1.1360 
1.1210 
1.1078 
1.0853 
1.0607 
1.0584 
1.0436 
1.0242 
1.0126 

Rl 
1279.7 
1285.0 
1309.2 
1330.2 
1364.9 
1401.8 
1405.2 
1427.1 
1455.7 
1473.1 

a1 
3.4105 
3.3134 
3.1237 
3.0392 
2.9570 
2.9150 
2.9128 
2.9048 
2.9074 
2.9147 

“2 

3,6952 
3.8338 
4.2347 
4.5372 
4.9701 
5.8300 
5.9116 
6.5231 
7 5859 
8.4276 

%la1 
1.0835 
1.1571 
1.3557 
1.4929 
1.6808 
2.0000 
2.0295 
3.2456 
2.6092 
2.8914 

TABLE 1. The values of r and R, at which simultaneous onset of two modes occurs for a range 
of depth ratios, D. a,  and a, are the wavenumbers of the two critical modes. 

If we take D and the ratio B2/Rl  = r as fixed parameters, then for any value of LY 

we can solve the eigenvalue problem for the akj  to  get the eigenvalues R,. The lowest 
of these gives the neutral stability curve R,(a). To compute the neutral stability 
curve numerically, we used a routine from the Numerical Algorithm Group library 
to find the eigenvalues of the complex 12 x 12 boundary-condition matrix. 

If D > 1.55 and r is near 1 ,  the neutral stability curve contains not just a single 
minimum, but two distinct minima. In  figure 2 we give an example, with r = 1.2, 
D = 3. This result is not unexpected, and has a simple physical interpretation. At the 
minimum corresponding to the larger wavenumber, the motion is predominantly in 
the thinner upper layer and so has a small horizontal scale comparable with the 
thin layer depth. At the minimum corresponding to the lower wavenumber, the 
convection is predominantly in the lower layer and so takes the larger horizontal 
scale comparable with the thicker layer depth. This argument is not precise, of 
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FIGURE 3. Linear eigenfunctions w and 4 are plotted against z in the 2 :  1 resonance case. 
(All eigenfunctions are normalized to have unit maximum.) 

course, because the layers are coupled through the thermal boundary conditions (this 
coupling is crucial in determining the nonlinear behaviour). 

If we now vary r ,  the ratio of R,/R,, we can arrange to choose r so that both the 
minima have the same value of R,. So with this value of r ,  we have a pair of values 
of R, and R, a t  which two differing convection modes onset simultaneously. Finally, 
by varying D, we can find a table of values of the point where the modes onset 
simultaneously. This is given in table 1.  A number of features are apparent from this 
table. First, for values of D 2 2 the ratio of the wavenumbers is not very different 
from the depth ratio, giving support to the physical picture given above. Second, the 
ratio of the Rayleigh numbers is never very different from unity again supporting the 
idea that at least a t  reasonably large D the two layers are only weakly coupled. 
Third, the values of R, and R, are not very different from 1708, the critical value for 
a single layer with fixed boundaries (Chandrasekhar 1961). Fourth, and importantly 
for what follows, there exists a value of D such that the two modes have 
wavenumbers in the ratio of 2 : 1. For this 2 : 1 resonance, the critical value of D is 
2.09765. 

In  figure 3 we show the linear eigenfunctions for the 2 : 1 resonance case. 

4. Weakly nonlinear theory with spatial resonance 
We now return to the formulation of (2.4)-(2.6) with boundary conditions (2.7) 

and (2.8). We assume that the linear eigenfunctions of the two solutions which onset 
together are available together with the critical values of R, and R, which we denote 
by R,, and Rc,. If we have solved the linear problem in terms of the variables q5i 
satisfying (3.3), we must remember to multiply the eigenfunction in the upper layer 
by a factor of G-l, so that boundary conditions (2.7) are satisfied (we are setting 
c, = 1) .  
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It is convenient t,o write the equations in the form 

where k = 1, 2 refers to the lower and upper layer respectively. 
The linear eigenfunctions can be written 

6 

$$) = exp (iaj x) C $jkm exp ( Y j k m  z )  + c.c., 
m=l  

6 

" ( 1 )  j k  = exp (iajx) c "jkm exp ( Y j k m  z ,  + c.c., 
m-1 

6 

0:;) = exp (iaj x) C Ojkm exp (y jkm z )  + c.c., 
m = l  

where C.C. denotes complex conjugate, the index j = 1 , 2  refers to the two 
simultaneously onsetting modes and the index k refers to values in the two layers. 
For convenience, we write 

y y  = ($g, w;y ,  0$)), (4.7) 

and we define 
y(l) = A ,  y?) + A ,  yil) + C.C. 

where the amplitudes A, are complex and are slowly varying functions of time. We 
consider the effect of slow spatial variation in a later paper. 

We must now distinguish between spatially resonant cases, where 01, and a2 satisfy 
a relation of the form 

na, + ma, = 0, n, m integers (4.9) 

and cases where the wavenumbers are non-resonant. I n  this problem it appears that 
the most interesting cases are the strong resonances where the wavenumbers ct2 and 
a1 are in a 2 :  1 or a 3: 1 ratio. When resonances are present extra terms enter the 
amplitude equations which are absent when there is no resonance. In the case of 2 : 1 
resonance these new terms enter at second order, but we must retain third-order 
terms to determine the amplitudes A ,  and A,.  I n  the 3 :  1 resonance the new terms 
are third order. Since in these cases the resonances make an 0 ( 1 )  change in the 
amplitudes near onset, we call these strong resonances (see also Coullet 1986). 

4.1. Non-resonant wavenu,mhers 

The appropriate scalings for the non-resonant case are 

with the slow timescale f =  e2t and 

(4.10) 

(4.11) R k - R c k  - - e 2 R,,, k = 1, 2. 
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O(e2)-terms are generated by inserting the linear O(c)-eigenfunctions into the 
quadratic Jacobian terms in (4.1) and (4.2). This leads to an inhomogeneous linear 
problem for y i2) ,  

(4.12) 

where the terms in M have the form 

A; e21a,zfl +A; e21azzf2+A1A2 el(a,+az)z f3 
I 

+A, A, el(a2-aI)z f4 + A, A,f, +A, A,f, + c.c., (4.13) 

the f, being functions of z. The functions f , (z)  can be written as double sums of 

f l  = 2 %kmn exp ( Y l k m  + Y l k n )  (4.14) 

whcre the index k refers as before to the two layers. Equation (4.12) can be solved 
straightforwardly, so that we can proceed to the O(e3)-terms. The Jacobians now give 
terms arising from combining y( l )  and y('), so we get terms proportional to elai2 and 
cl"zz. Because al, , do not satisfy (4.5), the only such terms have the form 

(AlIA112gl+AllA212g2) el"lz+ (A,IA,12g3+A,IA,12g,) elaZz+c.c. (4.15) 

The time-dependent terms and the departure of R, from their critical values also 
enter at the O(e3)-level. To derive the amplitude equations, we need to derive the 
adjoint eigcnfunctions from the inner product which is 

exponen tials, e.g. 6 6  

m=1 n=1 

Integration by parts, using the boundary conditions (2.7) and (2.8) together with 
the same boundary conditions applied to $f and O', shows that the problem is self- 
adjoint; that is the adjoint ($', ot, @) satisfies the same problem as (k, o, 6 ) ,  and so 
we can take the adjoint eigenfunctions as equal to the original ones. This procedure 
leads to amplitude equations of the form 

where ,ul = cll R,, + c12 R,, and pZ = cZ1 R,, + c,, R,,, where terms generated by the 
expansion up to O(e3)  have been included. Equations of this type have been derived 
in a number of different physical contexts. 

4.2. The 2:  1 resonance 

We now consider the case where a, = 2a1 = 2a, a circumstance which occurs in our 
problem when D = 2.098. Coefficients in a 2 : 1 resonance situation have been 
previously computed by Rosenblat, Davis & Homsy (1982) in connection with 
Marangoni convection, but our technique is slightly different. 

We again adopt an expansion of the type (4.10), but now the slow timescale is 
t"= Et and we write 

Rk-Rck = eRZk,  k = 1, 2, 
Rck 

(4.18) 
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in contrast to (4.11). When the linear eigenfunctions are inserted into the nonlinear 
Jacobian terms in (4.1) and (4.2), terms of the type 

JfF) A2 , e4inz fl + A l  A ,  e3inzf2 + AT eZiazf3 + A ,  A,  eiaxf4 +A, A , f 5  + A ,  A , f ,  + C.C. 

(4.19) 

are generated. In  fact that  terms proportional to eiax, eZiaz are present means 
that it is not possible to solve for $(2) without bringing in the terms involving 
(Ai- Rci) /Rci .  This is why (4.18) differs from (4.11), and why the timescale is O ( E ) .  The 
coefficients of the second-order amplitude equation can be determined in the usual 
way, by multiplying through by the adjoint and integrating: the exact form of the 
integral is dictated by the form of (4.16). The resulting amplitude equations have the 
form 

(4.20) 

where a. is real. The fact that the same coefficient appears in front of the nonlinear 
terms is due to the normalization of the eigenfunctions : this was chosen so that 

(yp, p) = ( y p ,  y y )  = 1 .  (4.21) 

It would be consistent to stop a t  O(e2)  with (4.20), but the quadratic terms in (4.20) 
have an energy-preserving character and do not determine finite amplitudes : from 

(4.22) 
(4.20) it follows that 

so that if, for example, both p1 and p2 are positive (both modes supercritical) (4.20) 
predicts that the amplitudes tend to infinity. We must therefore go on to introduce 
the cubic O(e3)-terms, even though these are formally O(e)  compared to the quadratic 
terms. 

For consistency, we derive all the O(e)-terms, although as we shall see some can be 
absorbed by renormalization. To do this we have to compute y('), the second-order 
solutions, explicitly. The second-order problem has the form of inhomogeneous linear 

d 
dt - ~ 1 ~ 1 1 2 + 1 ~ 2 1 2 1  = P11~,12+P21~212 

equations 
(4.23) 

where Mg) is the resonant part of the Jacobian having terms of the form 

A; eZiaxf3(z) +A,A, eiazf4(z) + C.C. (4.24) 

M g )  is the non-resonant part of the Jacobian having terms of the form 

A; e4iazfi ( z )  +A , A e3iaxf2 ( z )  + A , A,f,(z) + A, A,f,(z) + c.c., (4.25) 

and N(') are the terms coming from the time derivatives and the terms proportional 
to RZi, so they have the form 

(A,  g, + A ,  R,, g2 +A, R,, g3) eias + (A,  g4 + A 2  R,, g5 + A ,  R,, go) eZiaz + C.C. (4.26) 

As before, the non-resonant terms give no difficulty, but the resonant terms need 
special treatment. 

The method of solution is to find a particular integral for these terms, which is 
straightforward, and then to add on terms of the form 

bkm exp ('OIj exp ( Y j k m  (4.27) 
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to satisfy the boundary conditions. For each j there are 12 b,, coefficients, since 
k = 1, 2 and m = 1,. . . , 6. However, although the 12 boundary conditions give rise to 
a matrix equation 

Bb = r ,  (4.28) 

the matrix B is singular, of rank 11,  because RCi are eigenvalues. We set b,, = 1 and 
solve the 11 x 11 system formed by omitting the last equation: the last equation 
then gives a relation which is just the amplitude equation. The procedure is repeated 
f o r j  = 1 and 2, giving a useful numerical check on the coefficients in (4.20). This is 
particularly helpful as without a fully two-dimensional calculation there are not 
many checks available on the numerical values of the coefficients of the amplitude 
equations. 

Now that the boundary conditions are satisfied, the last step in the calculation of 
yC2) is to add on a suitable multiple of y( l )  so that the normalization condition 

( y p ,  y y )  = (yf’, ypt) = 0 (4.29) 

is satisfied. 
We now do the O(e3)-terms; the Jacobians give terms arising from products of 

y(” and y(’). We might expect terms of the form A j  to arise a t  this order, but in fact 
the coefficient associated with such terms is zero. The coefficients of the amplitude 
equations are found by multiplying through by the adjoint and integrating as 
usual. 

We obtain the following terms with non-zero coefficients : 

f ;  A,  = P , A ,  + idi,A, A, - E { G ,  A , I A , ~ ~ +  b ” , ~ , 1 ~ , 1 2 +  id”,A,Al + iz, A,B,},\ 
L A,  = ,ii2 A ,  + id, A: - el&, A , I A , ~ ~  + 6, A , I A , ~ ~  + id”, A,  A,} ,  

J (4‘30’ 

1 where Pj = ~jlR2, +Ci2R22+c{Ej11Ri1+Ej12R21R22+EizBRi2}i 

(4.31) i 
The terms id”,A,A,, id,A,A, and iZlA,A, can be eliminated using the second- 

order equations (4.20). We then divide through each equation byf; a n d L  and finally 
rescale A ,  so that the coefficient in front of the A,A, is the same as that in front of 
the A: term. We then have 

A , = p1 A , + iaA , A, - €{a, A ,IA ,I + b,  A , I A  ,I ‘1 ,I 
A, = p, A , + iaA - e ~ a ,  A,IA ,12 + b, A,JA ,12}, J 

(4.32) 

(4.33) 
where Pj = 5 1  R,l+ cj2  R22 + “Cj11 Rijl+ $12 R21 R22 + c j22  %I>\ 

I a = 010 + 4% R,, + a2 R221, 

and the coefficients appearing in (4.33) can be easily evaluated in terms of those 
appearing in (4.31). 

The coefficients in (4.32) will depend on the Prandtl numbers and the parameter 
G, assuming the two fluids have the same thermal diffusivity. The parameter G 
depends on how the experiment is performed, as explained in $2. In table 2 we give 
the coefficients for G = D4R,/R, = 20.537, the one-fluid case, and with Pl = P, = 0.1, 
1.0, 10 and 100. We also give the results for G = 1, P2 = 0.1, 1.0, 10 and 100 and 
P, = 20.537P2. 
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5. Analysis of the evolution equations in the case of 2: 1 resonance 

We begin with (4.32) derived in the previous section, namely 

5.1. Reduction of order 

A ,  = plAl  +iaA,Al-a,A,IA,12 - b,A,~Az~z,\ ( 5 . 1 ~ )  

A ,  = ~ , A , + i a A ~ - b , A , ~ A , ~ 2 - a , A , ~ A , ~ 2 ,  J (5.1 b)  

where the terms in c have been rescaled, as can be done since the dynamics are scale 
invariant. These equations have been analysed in some detail by Dangelmayr & 
Armbruster (1986 ; see also Dangelmayr 1986), who in fact treated all important m : n 
resonances. A similar set of equations (with the pi, a,, b, complex) appears in the 
normal form for two interacting Hopf bifurcations with frequencies in the ratio 2 : 1. 
A partial analysis is given by Knobloch & Proctor (1988). Here we summarize their 
main results, and add new ones of our own. In  particular, while we essentially 
reproduce the above authors' results for steady solutions and travelling-wave 
solutions, we are able to give, in a certain portion of parameter space, a more or less 
complete discussion of the branch of modulated waves that appear and determine its 
stability. We also give a discussion of an attracting homoclinic orbit that appears in 
a surprisingly large region of parameter space, and show how this rather unphysical 
behaviour may be resolved by including extra terms in (5.1) representing 
imperfections in the system. 

We begin by using the translational invariance of our original problem to reduce 
the order of (5.1), writing 

Substituting and equating real and imaginary parts, we obtain 

A ,  = p cis, A,  = a eil (5 .2)  

= , U , ~ + L X P ~  C O S X - U , ~ ~ - ~ ~ / I V ~ ,  (5.3a) 

(5.3b) 

(5.3c) 

( 5 . 3 4  

p8 = - apa sin x, 
C? = p2 a-ap2 cos X- b 2 p 2 a  - a, a3, 

mj = - ap2 sin x, 
where x = 28- q5 - in, and (5.3 b, d )  may be combined to give 

C )  x = a  --2a sinx. (5.4) 

Thus the system is reduced to third order (this is clearly possible since the origin in 
x is arbitrary). Once p, u and x are found 8 and q5 may be determined from (5 .3b ,  d ) .  
We shall investigate this third-order system for general values of a,, b,, a,, b, though 
bcaring in mind in our selection of examples the values given for the experiment 
described earlier. The results are best represented as bifurcation diagrams in the 
(p1, p,)-plane: two typical cases are shown as figures 4 and 5. 

Solutions of constant amplitude 
We now seek solutions such that p = u = = 0. These fall into three types. 

(i) Pure modes (P+, P-): 

(5.5) 

These modes exist if a,p, > 0 and represent steady convection with period 1 .  Strictly 
the value of x is irrelevant when p = 0 but the labelling will prove useful later. 
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- 
-0.2 

C 

FIGURE 4. Bifurcation diagram for a case ( a  = 1, a,  = 1, b, = 2 ,  a2 = 5 ,  b, = 0 )  in which the branch 
of modulated waves is unstable. Travelling waves exist to the right of the parabola COAB and are 
stable to the right of curve A .  Stable and unstable solutions are given in each region, the latter 
bracketed. The line r is the Hopf bifurcation of the state M,, A the Hopf bifurcation of the 
travelling-wave branch and ZZ the homoclinic orbit for the modulated waves, and the line on which 
the structurally stable homoclinic orbit ceases to be attracting. 

(ii) Mixed modes ( M + ) :  - 

These solutions represent steady convection with period 2. The two modes are quite 
distinct, and have very different stability properties. 

(iii) Travelling waves (TW) : 

(5.7) 

There are two of these waves, one travelling in each direction, but we shall not 
distinguish them. They exist provided (2p ,  +p2)  A > 0 and IcosxI < 1 ,  i.e. when 
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The phase speed of the waves is given by -2an sinx. It follows that when equality 
holds in (5 .8)  the phase speed vanishes, so that the travelling waves bifurcate there 
from one or other of the M-modes. The latter modes themselves bifurcate from the 
Dure-mode solution on the lines 

(5.9) 

It should be noted that the time dependence of these solutions arises solely from 
the nonlinear interaction of the competing modes (in particular, the phase speed goes 
to zero a t  the codimension-2 point). Thus this behaviour is somewhat different from 
the codimension-2 bifurcation arising a t  the double Hopf bifurcation with O ( 2 )  
symmetry occurring in binary fluids (see e.g. Kolodner et al. 1986). The stability of 
these relatively simple solutions may be found by standard methods. In  view of the 
work of Dangelmayr & Armbruster (1986) we do not give here an exhaustive list of 
possible cases, but concentrate on the particular case a, > 0, a2 > 0, A > 0 that  holds 
in our experiment. Then for ,ul, ,uz < 0 there is no motion, while for ,u2 > 0 the pure 
mode is stable for 

For ,ul just greater than this value the stable solution is the mixed mode M, given 
by (5.6). The latter mode in turn loses stability a t  a Hopf bifurcation as p1 is further 
increased. This bifurcation, which does not involve the phase x may be located by 

I t  FLM I88 

FIGURE 5 .  As figure 4, but  for a case in which the modulated waves are stable : a = 1 ,  a,  = 3, 
b, = 1 ,  a2 = 1 ,  h, = 0. 
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standard methods, and lies on the line in (pu,,pu,)-space given by (5.6) together 
with 

2a,p2+2a2cr2 = -. UP2 (5.10) 

The relation between p1 and p2 cannot be written in closed form, but for small pl ,  
p2, p, cr it is given approximately by 

0- 

2a2u3 : 
p, --acr - -a ( p  2- )t. P+-) 

3% 
(5.11) 

Strictly speaking the condition (5.10) is that for the existence of two equal and 
opposite eigenvalues to the perturbation equations to M, ; for the eigenvalues to be 
complex conjugate there is the extra condition that the amplitudes p, cr satisfy 

(5.12) 

It is easily seen that this relation is satisfied for sufficiently small p, cr, since from 
(5.11) p2 /a  4 1 in that case. The Hopf bifurcation that occurs appears to be 
subcritical in the regime of interest, and leads to growing oscillations in amplitude 
(but not in phase). These standing waves grow until they lose stability with respect 
to phase; they then approach an attracting homoclinic trajectory, leading to a 
solution for which p is non-zero only in pulses that are separated by intervals of ever 
longer duration. We discuss these waves below (96). 

The other mixed-mode branch (M-) does not suffer a Hopf bifurcation. This can be 
seen by noting that the necessary condition for such a singularity is (5.10) with a 
replaced by -a. 

The line of Hopf bifurcations eventually meets the boundary of the region given 
by (5.8). Here p2 = 2a2, so substituting into (5.10) we obtain 

(5.13) 

and p1 and p, can then be found from (5.7), (5.8). This interesting point (labelled A 
in figures 4 and 5) is one for which the linearized stability problem for the steady 
solutions has all three eigenvalues with zero real part (one real, two complex 
conjugate). It is of course necessary that (5.12) be satisfied when (5.13) holds; this 
will occur if 

2(a1a2-bb, b2)+(2a, + ~ , ) ( ~ , + b , - 2 b , )  2 0. (5.14) 

Plainly values of the ai, bi can be found (even with a1a2 > b,b,, A > 0) for which 
(5.14) is not satisfied. In that case the line of Hopf bifurcations does not meet the line 
given by (5 .8)  but instead ends in a fold catastrophe. The dynamics in this case is not 
understood completely, but fortunately (5.14) is satisfied for the values of a,, bi 
obtaining in the particular problem studied in this paper. We therefore make the case 
where (5.14) is not satisfied the subject of future work. 

The travelling waves given by (5.7) may also be stable or unstable, depending on 
the values of p,, p,. If, again, we suppose that (5.14) holds, there is in fact a line of 
Hopf bifurcations connecting the origin 0 and the point A .  This line is given 
parametrically by (5.7) together with the relation 

(2a, cr2 + 4a, cr2 - 2aa cos x) [4a, cr2(2a2 c r2  - 2acr cos x) 
+(2acr cos~+2b2cr2)(2acr cosx-4b,cr2)+12a2cr2 sin2x] = 8a2dcr4 sin2X (5.15) 
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and is shown on the figures as the curve r. The solutions that bifurcate from the 
travelling waves on r are modulated waves, for which both the amplitude and phase 
of A ,  and A ,  change in time. Close to r, a t  least, the modulations are strictly 
periodic, since they correspond to a periodic solution of the third-order system (5 .3 ) .  
Their nature can most easily be comprehended close to the origin, and in $6 below 
we give a full analysis in that case, showing under what conditions they are stable. 
Wc end this section by noting that in many cases travelling waves are stable for all 
( p l ,  p,) within the parabola given by (5.8) and to the right o f r .  They can thus be seen 
as an important phenomenon whenever two resonant modes interact close to the 
onset of instability. Even for the most exotic combination of the coefficients a,, b, 
there is always a region of the ( p l ,  p,)-plane for which travelling waves are stable. 

6. Bifurcations from the steady solutions 
6.1. Stability of travelling waves at large amplitude 

In this section we consider bifurcations from solutions discussed in $5. We begin with 
the travelling waves, and treat first of all the simplest problem, that of analysing 
their stability far from the origin (or, alternatively, for small values of a :  the two 
conditions are equivalent under a scaling of the amplitudes p, a and of the pt) .  It 
is convenient to regard a as a small parameter. This means that travelling waves, 
as well as having to satisfy the exact relation p2 = 2a2, must also satisfy the 
approximate equations 

4 pl = a,  p2+ b, a2 

p2 = a,a '+b,p2 .~  

Thus the waves only exist in the neighbourhood of the 

a, + 26, 
2a, + b, 

P2 = hop,; A, = -. 

We then keep ,ul fixed, and write 

p2 = hpl, h = h,+ah,, 

p = po+apl ,  cr = cr0+aa1; pi = 2 4  

line 

2Pl 
2a, + b, ' I  =- 

It is plain from (5.4) that the phase x will then adjust on the very slow timescale 
T, = a2t to changes in p and cr, which themselves will adjust on the timescale t during 
which x may be regarded as a constant. The evolution equation on the t timescale is 
then, correct to O(a) ,  

and provided a1a2 > b, b, and 2a1+a, > 0, p1 and u1 will tend to values given by 
setting the right-hand sides equal to zero. Solving for p l ,  u1 we obtain 

1 p1 = P cosX+&hl, 

a1 = R COSX+SA,, J (6.5) 
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where 

and D = a,a,-b,b,. 

Then the equation for the evolution of x on the timescale T2 is 

= (W c o s ~ + U h , )  sinx, 

A 
W = 2 d 2 P - 4 R  = - 

D ’  
U = 22/2&--48. where 

If we write C = cosx, then (6.7) becomes 

- (1-C2) (WC+Uh,) (C2 < 1). (6.8) 

This has fixed points a t  C = 1, and a t  C = - Uh,/W. Clearly the latter is stable if 
W > 0. Thus, as noted in $5, travelling waves are stable everywhere for small a (or 
large amplitude) provided A > 0, D > 0 and 2a, + u2 > 0. 

dC 

dT2 

6.2. Moduluted-wave solutions at small amplitude 

Typically the bifurcation of the modulated waves from the travelling waves involves 
dynamics that are fully three-dimensional except in the neighbourhood of the 
bifurcation point. However, the entire structure of the modulated waves branch can 
be investigated when p1 and p, are both small (or equivalently if a is large). If in (5.1) 
we set 

I 

= 6- A .  = sA.  p. = e2jii, i = 1,2;  s -+ 1. (6.9) 
a a  
at al’ a ,  a 
- 

then substituting in and dropping the tilde’s, we obtain 

A,  = iaA2A, + a ~ , - a , ~ A , / 2 - b , ~ A , ~ 2 A , ] , ~  

A ,  = i a A ~ + e ~ 2 - a a , ~ A , ~ 2 - b 2 ~ A , ( 2 A 2 ] .  
(6.10) 

If we now ignore the terms in s ,  then the resulting system is completely integrable. 
In  fact we can see immediately that the quantities 

(A,A;+A;A,) 
2R3 R = ((All2 + IA212)i, K = (6.11) 

are both constants of the motion. If we use the quantities p,  cr, x of (5 .3) ,  ( 5 . 4 )  then 
we may write 

K = cos2psinpsinx. 
p = R cosp, 
CT = R sin /3, (6.12) 

Figure 6 shows curves of constant K .  For fixed R they clearly define periodic 
solutions for p (and hence for p ,  cr) and x, and we expect that of this two-parameter 
family of modulated waves a finite number will survive when the O(s)-terms are 
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n 
X 

FIGURE 6. Contours of constant K (equations (6.11), (6.12)). 

0 

included in (6.10). In  order to apply perturbation theory we need to ascertain the 
evolution of /3 and x on curves of constant K .  From (5.3), (5.4), (6.12) we have (with 
E = 0 ) ,  p = -R sin/3), so that 

j = -  aR cosp cosx, (6.13 a )  

(6.13b) 

Eliminating cosx from ( 6 . 1 3 ~ )  using the definition of K we obtain 

p2 = a2 R2 cos2/3(l - K 2  cosec2p sec4P). (6.14) 

Letting h = cos2/3, @/at = 2aR(a/&), we obtain (6.14) in the canonical form 

h: = h'-h3-K2. (6.15) 

This equation can be solved in terms of elliptic functions, but the results are not 
particularly illuminating. We prefer to write it in the form +h,2+g(h3-h2) = -$K2, 
and regard -+K2 as the energy of a particle in the potential V ( h )  = +(h3-h2). Clearly 
periodic orbits are possible with h < 1, €or values of K 2  ranging from 4/27 (for which 

two fixed points given by sinx = 0, p = in; these are of course both to be identified 
with the pure-mode solution A ,  = 0, A ,  =k 0. (The other apparent pair of fixed points 
a t  /3 = 0 is illusory as can be seen from examination of (6.13b). The difficulty stems 
from the singularity of the amplitude/phase representation at  points where one of 
the complex amplitudes passes through zero.) 

h = 2) up to K 2  = 0,  representing a homoclinic orbit of infinite period connecting the 
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For any value of K2 between 4/27 and 0 we may define h,, h, (h,  < h,) as the two 

h2-h3-K2 = 0. (6.16) 
positive roots of the equation 

Then the period P of the modulation (with respect t o  the timescale T )  is given by 

(6.17) 
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P is a function of K alone, and in terms of the original timescale the period is 
(P(K)/BaR): it is plotted in figure 7 together with the average value of h over the 
period, denoted by F ( K ) ,  and defined by 

In what follows we shall also require the quantities 

( c o s ~ ~ )  = (h') ,  

(sin'p) = 1 - (h ) ,  

(6.18) 

( 6 . 1 9 ~ )  

(6.19b) 

(sin'p cos'p) = ( h ) -  ( h 2 ) ,  (6.19~) 

(6.19d) (sin4/3) = 1 -2(h) + (h2). 

All these integrals can be expressed in terms of F ( K ) .  In fact 

- 4[(h2-h3-K2)f]!:  = 0 (6.20) 
(2h- 3h2) dh 

P(K)  ( 2 ( h ) - 3 ( h 2 ) )  = 2 ( h 2 - - 3 - p ) ;  - 

so that ( c o s ~ ~ )  = gF(K),  

(sin") = 1-F(K) ,  

(sin'p coszp) = $F(K) ,  

(sin4p) = 1 -$F(K).  

(6.21 a) 

(6.21 b)  

(6.21 c) 

(6.21d) 

From the figure it can be seen that F ( K )  is a monotonic function of K ,  rising from near 
zero when K z 0 to a maximum of 213 when K 2  = 4/27. 

In  order to find which of the above orbits approximate to periodic solutions of the 
full equations, we need to consider the O(s)-terms in (6.10). It is convenient to express 
these equations in terms of the three variables R, K and /I, so that R and K will evolve 
on a slow timescale T = st when the small terms are considered. After some 
manipulation we arrive a t  the exact equations 

R = eR{pU, cos2/3+p2 sin2p--R2[a1 cos4,8+(bl+bz) sin'p cos2p+a,sin4/?]}, ( 6 . 2 2 ~ )  

K = EK (c0s2p-2  sin2p)(pa-~1+R2[(al-b,) cos2p+(bl-a,) sin'b]]. (6.22 b)  

In  order to find the slow variations in R and K we may, correct to O ( E )  take averages 
of cos", sin'p, etc. over the fast timescale, and regard p as satisfying (6.14) while 
we do so; then the equations for the evolution of R and K are, using (6.21), 

RT = R { , F % I F ( K ) + ~ ~ [ ~  -F(11)]-~R2[2U,F(h')+(b,+b,)  F(K)+a2(3 -4F(K) ) ] } ,  
(6.23) 

and KT = K [ 3 F ( K )  - 21 b2 -pl + R2(bl - az)]. (6.24) 

The second-order system (6.23), (6.24) controls the slow evolution of the modulations 
to the travelling waves. Fixed points correspond to limit cycles, i.e. modulated waves 
with constant modulation frequency. 

These fixed points are of two types: 

(1) 3F = 2, pl+ 2p,-$R2A = 0. (6.25) 

These have h'' = 4/27 and so are the travelling waves, which are in fact given 
without approximation by (6.25). 
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( 2 )  3F + 2 ;  then we have 

(6.26 a )  

(6.26b) 

These represent modulated waves. The solutions (6 .26)  bifurcate from the 

1 pz-,u1+R2(b,-a,) = 0, 

p l F  +p2(  1 - F )  = @12[2a,F+ (6, + b,) P+ a,(3 - 4F)I.) 

travelling waves when F = f in (6 .26)  ; that is, when 

(6 .27)  

This line can be shown to coincide, in the limit of large a or small pt, with the exact 
condition for Hopf bifurcation given by (5.15). 

For each value of K 2  < 4 / 2 7 ,  (6 .26)  defines a line in the (pl, p,)-plane. It is easily 
established, since F ( K )  is monotonic, that each value of K defines a unique line, so 
the domain in which modulated waves exist lies wholly on one side of the bifurcation 
curve (6.27), a t  least sufficiently close to the origin. Thus the stability of these waves 
can be decided by finding the location of the line corresponding to the maximum 
amplitude of modulation, namely when K x 0, F M 0. This gives 

p, = Rza,, p2-p1+R2(b l -aa , )  = 0. (6 .28 )  

Thus for F = 0, ,ul/pz = b,/a,, while on the Hopf line (from (6 .27 ) )  

p1IIu2 = (c  + b , ) / ( c  + a,), 

where c = ~(2a1-26 ,+b , -a , ) .  Since the region of stable travelling waves has ,ul/,uz 
larger than its value on the Hopf line, we can see that modulated waves will only be 
stable (in the case a, > 0 ,  c + a ,  > 0 which obtains for our experiment) if c > 0, a2 > 6,. 
A full stability analysis confirms these results, and demonstrates the non-existence 
of a Hopf bifurcation of the system (6 .23 ) ,  (6.24), which would lead to a quasi-periodic 
modulation if it existed, except for some very exotic combinations of parameters. 

6.3 .  The homoclinic orbit 

We have already noted in $5 that the mixed-mode branch M, suffers a Hopf 
bifurcation on the line given by (5.10). This bifurcation is subcritical for values of the 
parameters appropriate to the experiment described in earlier sections, and leads to 
growing oscillations of the amplitudes p and u. As the amplitude of the waves 
increases, the phase x initially stays close to its original value 0 but eventually u 
becomes very small on part of the trajectory. It can then be seen from (5.4) that 
x = 0 will be strongly unstable in this region, and in fact x will change from x 0 to 
M x in a short time. (This is equivalent to A,  passing through zero.) Once this change 
in x has taken place the only solution stable with respect to amplitude is the pure 
mode p = 0, (T, = ,u2/a,. Thus p will become very small and (T --f ( ,uz/az)i ,  so that x = 7c 
will be unstable again. Thus x changes slowly from x rc to M 0, when there is again 
instability with respect to amplitude and the cycle repeats as before, except that on 
each circuit the period will (typically) increase since x becomes closer and closer to 
0 or rc in appropriate parts of the trajectory. The system thus tends to approach a 
homoclinic orbit, formed by the line p = 0, u = (pz/a2)i, 0 < x d x, together with 
a trajectory that may be best described by allowing u to take negative values, 
and making the identification (r, x) + ( - (T, x +x). Then the trajectory joins 
(T = + @,/a,); with u = - (pz/a2); a t  x = 0. It is remarkable that this orbit remains 
attracting within a finite region of (pl,  pz),  in contrast to the homoclinic and 
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0 P = Po P 

FIQURE 8. Sketch of the structurally stable homoclinic orbit in (p ,  u, X)-space. The orbit is 
traversed in the direction shown by the arrows. The dotted portion of the orbit is traversed 
instantaneously since A ,  changes sign there. The circled dot denotes the mixed-mode solution 
M + .  

P = Po P 

FIQURE 8. Sketch of the structurally stable homoclinic orbit in (p ,  u, X)-space. The orbit is 
traversed in the direction shown by the arrows. The dotted portion of the orbit is traversed 
instantaneously since A ,  changes sign there. The circled dot denotes the mixed-mode solution 
M + .  

heteroclinic orbits that  appear in many multiple bifurcation problems (see, among 
many examples, Knoblich & Proctor 1981). This is because all parts of the orbit lie 
in invariant planes. Figure 8 shows how p and u vary during an approach to the 
orbit. 

The dynamics near the homoclinic orbit are governed by (5.3a, c )  and (5.4). We 
can divide the orbit into four regions, illustrated in figure 8, and coupled by 
asymptotic matching. I n  what follows 

(i) u = O(E)  ; p x po a constant, and x changes from being close to 0 to being close 
to .n in a time O ( E ) .  

(ii) x is close to K, so x = z-ejj; u and p are 0(1) and vary from p M p,, u x 0 on 
entry to p M 0, s x u, = (p2/a2)+ in a time o(I). 

(iii) p is small, CT x CT, and x decreases from x 7t to x 0 in a time O[ln (l/e)]. 
(iv) x is O(s) ,  u and p are O(1) and vary from p M 0, u M uo to p x po, u x 0 in a 

time O(1). 
No complete analytical results are possible for regions (i i)  and (iv) except in certain 

limiting cases, but useful information can still be obtained. We begin the analysis by 
considering region (i), and choose scaled variables by defining 

t = €7, u = €5. (6.29) 

p x p, throughout this region (p, is not known a t  this stage), so (5.3), (5.4) may be 
reduced to 

(6.30) 

is a small parameter. 

_ -  dt? - -"pi cosx+O(e), - dX = a?sinX+O(e). P2 
d r  d7 u 
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These two equations can be combined to give 

1 
5 sinx = const. J 
3 cos x = - apir + const, 

If we choose t = 0 to be the moment when x = in, and let 6 sinx = A,, then 

(6.31) 

(6.32) 

(6.33) 

and thus for large 171, we may write in terms of the outer variables 

0- - apiltl, T + f  co, (6.34 a)  

- €A1 
UP: t 

X-- , r+-co, 

In  region (ii), we let x = 7c-62; then, a t  leading order we get 

dP - = -apa+plp-a,p3-bla2p, 
dt 

da  
dt 
_ -  - ap2 +p2 a - a2 a3 - b,  ap2, 

(6.34b) 

(6 .34~)  

( 6 . 3 5 ~ ~ )  

(6.356) 

(6 .35~)  

The first two equations may be solved separately with initial conditions (at t = 0) 
p = po, a = 0. This solution curve will end a t  the point p = 0, a = ao. The trajectory 
may be characterized by the relation between p and a, which is not known in closed 
form, but is governed by 

d r  - ap2+p2a-a2(r3-b2ap2 

dp 
- _  

-apa+plp -alp3 -bl pa2 ’ 
(6.36) 

whose solution we denote by a = a,@). Once a1 is known, a and p may be found as 
functions of time: the expression giving p is 

dP’ (6.37) 

As p + 0 in (6.37) the integral becomes singular. We can exploit this by putting 

ap’a -pl p‘ + a, p‘3 + bl a2p’ ‘ 
t = I ”  

(6.37) in the equivalent form 
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Equation (6.35b) can be then formally solved, determining the coefficient by 
matching to (6.34b), to yield 

where p(t’) id determined by (6.38) and u = u,Lp(t’)]. 
Now as t + co, cr + uo and p --f 0, so from (6.39) 

where 

exp(2av,t), t + C O :  
2 - -  4 1 1  

I ,  = lim exp{ 1 [ 2 a ( ~ - u ~ ) - - + ~  u t  dt’-In6 , 
t +m ap2 ‘1 I 

(6.39) 

(6.40) 

where I ,  is finite, since u-uo and p2 decay exponentially as t + CO. The evolution of 
p as a function of t may be deduced from (6.38) : 

P - Po I ,  exp (Pl -ago - b 1 4 )  t, 

I ,  = expi I”[ ago + b, u: - p1 -I]:}. 

(6.41 a )  

(6.41 b )  where 

Again, I ,  is finite, because the term in square brackets is O ( E )  near p = 0. 

P ,  

au-p, + a, p2 + b, u2 

In region (iii), u z u,,, so we may write, ignoring quadratic and higher powers of 

* = auop cosX+plp-blpu:, ( 6 . 4 2 ~ )  
dt 

(6.426) 

We can solve these equations to yield 

cotix = exp [2auo(t-cl)], ( 6 . 4 3 ~ )  

(6.43b) p2 = c2 cosh [2auo(t -cl)] exp [2(pl - b, at) t], 

where the constants c, and c2 are to be determined by matching with region (ii). As 
t-c, +- CO, x - 7 ~ - 2  exp [2auo(t-c,)] and so by comparison with (6.40) 

(6.44) 

From (6.43 b )  p - ($c,)i exp (ago c,) cxp [(p, - b, u: - avo)  t] as t -cl  + - a, so to 
match with (6.41a), 

po I ,  = ($c,)+ exp (ago el) (6.45 a )  

or (6.45b) 

The minimum value of p given by (6.43b) at t = c, is then a positive power of 6 

provided pl-auo-b, u: < 0, thus justifying the neglect of higher powers of p in 
(6.42). For t - c p  CO, x - 2 exp ( -2auo(t-cl)], ( 6 . 4 6 ~ )  

p - ($c,)i exp [ccuo(t -el)] exp (pl - b,  u:) t (6.466) 
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so that x + 0 and p becomes large. In region (iv) x = €2 is small. The equations in this 
region are 

(6.47a) 

(6.476) 

* = apcr +pu, p -al p3 - 6 ,  pa2, 

dcr 
- = -ap2+p2v-a2cr3-b2crp2, 
dt 

dt 

(6.47~) 

and, as in region (ii) ,  we seek the trajectory that goes from g M cro, p M 0 to cr NN 0, 
p M po. As in that case, we have no analytical solution for the t,rajectories, but we can 
suppose that p = p(n )  is known. Since the point cr = cro, p = 0 is a saddle point, there 
is only one trajectory passing through it (apart from p( t )  = 0) and so po = p(0) is 
uniquely determined. 

Solving ( 6 . 4 7 ~ )  for 2 yields 

2 = c, exp ( - 2aa0 t) cxp { jy+a(cr-cro) 1 1  dt' 

and by comparing (6.48) with ( 6 . 4 6 ~ )  we arrive at the result 

2 = - 2 € exp ( -2acro(t-cl)) exp { lm( f$ -2a(c r -c r0)  

(6.48) 

(6.49) 

since the integrand +0  as t+-  co. A similar analysis for p (compare (6.38)) yields 

(6.50) 

with cr = r ( p )  in the exponential integrand. 

elapsed time is T ,  then T is given by matching the t+  co limit of (6.50) to po, 
We can now determine the time a t  which p returns to its starting value, po. If the 

where 2 - 1) dP j. acre +pl - 6 ,  V; 
acr +pl - b, r2 -a, p 

I ,  = exp{ [:( 
On the second entry to region (i) we have, by comparison with (6.45) 

0- - ap; It--71 

cA2 1 1 as t+T- ,  
X - Z G  

(6.51 b )  

(6.52) 

where, for stability of the homoclinic orbit, lA21 < lAll. We obtain an expression for 
x from (6.49) : 

I lim exp{ 1 
t o  +-CC t 0  

dt' + In (T - t o )  

(6.53) 

2 exp ( - 2acr0(t - e l ) )  
T-t X =  
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where the quantity in curly brackets remains finite as t+T-. Hence we have as 
t+T 

I ,  = lim exp{ 
tO+x 

dt' + In (5" - t o )  
T-t' 

where 

so that A ,  t: = Sap: I4 exp [ - 2a(~,(T- c,) ] .  

We can now determine Az/A,. Using (6.44), (6.45), (6.51a) and (6.55) we find 

(6.55) 

and 

where h = 2av0/(,u1 - b, (T; + av:). Now this can be written 

(6.56) 

(6.57) 

(6.58) 

where K is a number of order unity. If e is small, the criterion that A,/A, < 1 is that 
A > 2 ,  for if this condition holds e'-' will dominate K at sufficiently small E. So the 
criterion for stability of the orbit is 

bl PZ h > 2  or p,<-. 
a2 

For small e the ratio of the periods for each 'pulse' of the trajectory is 

3 - 2 -  In €A (A-1) .  
T, I n d ,  

(6.59) 

(6.60) 

The conditions required for the homoclinic orbit to exist and be stable are: (i) 
p1 --avo - b, vi < 0 so that p becomes small with x x rt as the singular point p = 0, 
v = vo is approached : (ii) p1 + avo- b, (T: > 0, so that the singular point is unstable 
when x x 0 : (iii) p1 - b, v; < 0 for the homoclinic orbit to be stable. These conditions 
are all satisfied if 

(6.61) 

Note that the boundary of the stability region coincides with the line in (,LA,, ,uz)-space 
that gives the locus of the homoclinic orbit arising from the Hopf bifurcation of the 
travelling-wave solutions (see (6.31) and ff.). Thus there is an unusual global 
bifurcation on this line, the nature of which is not fully understood.t It is remarkable 
that the stability criterion (6.62) does not involve the details of the 'pulsed' section 
of the orbit : this is because the time spent on this phase is very short compared with 
that for p x 0. The behaviour of p and (T as functions of time during the approach to 
the homoclinic orbit are shown in figure 9. 

t An elegant representation of the orbit that clarifies the dynamics and illuminates the nature 
of the bifurcation that arises on this boundary has recently been given by J. W. Swift (1988, 
private communication). 
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FIGURE 9. The approach to the homoclinic orbit, p and vs. time under system (5.1) with 
a , = a , = 1 , b , = b , = 0 , p ~ = - 0 . 8 , p u , = 1 . 0 , a = 5 .  

6.4. The  eSfect of imperfections on the h o c l i n i c  orbit 

While the homoclinic orbit described above is structurally stable to changes in the 
parameters in (5.1), i t  does not survive the addition of terms that lead to  imperfect 
bifurcations, rather than perfect ones. I n  particular, if the surface p = 0 is no longer 
an invariant surface, the crucial part that  it plays in the approach to the homoclinic 
orbit will change. We may model such behaviour by adding a term to ( 5 . l a )  to 
give 

A,  = p + p l  Al+iaA2Al-alAlIA112-6,A,IA2(2, (6.62) 

where the constant /3 (which can be taken to be real and positive) represents the effect 
of external forcing of the mode cc eikx. Such a term will (together with a similar one 
in (5.1 b) that we do not discuss here) give the dominant effect of a general external 
forcing on the motion. It is particularly pertinent to convection in a cylindrical 
geometry, where the horizontal coordinate x may be identified with the azimuthal 
angle 8, and where k = 1 gives an imperfection cc eis, corresponding to the effect of 
tilting the cylinder slightly. For sufficiently small p, the effect of the imperfection on 
the travelling waves will be negligible (though the amplitude and speed of the waves 
will not be constant, but will vacillate slightly as the waves pass ‘over the bump’). 
However, the effect of this term on the homoclinic orbit is crucial; numerical 
experiments have shown that with p + 0 the realized solution is periodic, close to the 
homoclinic orbit, with a period that increases as p decreases. These results are 
confirmed by the analysis below. 

Using (6.62) instead of ( 5 . l a )  we get instead of (5 .3a) ,  (5 .3b)  

p = pU1p+apa c o s ~ - a ~ p ~ - b ~ p a ~ - b ~ p a ~ + / 3  aos8, (6.63 a )  

p8 = -apu sinx-Psin8. (6.63b) 
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The equations for u and x are 

(6.64 a) 

(6.64b) 

Numerical experiments have revealed that two types of periodic orbit are possible, 
which we denote by H, and H-. The condition determining which orbit occurs 
emerges from the analysis. In what follows, the upper sign is associated with the 
H, case, and the lower sign with the H_ case. I n  each case, there are eight distinct 
asymptotic regions : fortunately, there is some symmetry which simplifies the 
analysis. 

( i )  u - O ( E ) ,  
(ii) u, p - O(l ) ,  8 z &ciX+gn., x = x-@. In  the H, case, 2 changes sign in this 

(iii) u z go, p small, 8 changes from to $xT$c, x changes from x to 

(iv) u, p - 0(1), 8 x $nT$x, x = €2. In  the H, case, 2 is negative throughout. In  

(v) u - O(c) ,  p z po, 0 N ixT$~,  x varies from 2x to x. 
(vi) u, p N 0(1), 8 x ixTa7c, x = x + e f .  I n  the H, case, 2 starts positive and ends 

(vii) u z uo, p small, 8 changes from $ x T $ x  to $xT$7c, x varies from 7~ to ~ T x .  
(viii) u, p - O ( l ) ,  8 z $rTix, x = €2. In the H, case, 2 is positive throughout. In 

the H- case, 2 is negative on entry, positive on exit. 
In both cases, on exit from region (viii) we re-enter region (i). The behaviour in 

regions (v)-(viii) is the same as in regions (i)-(iv)”apart from some sign changes. The 
parameter /I’ is taken to be O ( E ) ,  so we set /I’ = $. The notation adopted is the same 
as in $6.3 .  

Region (i) is governed by (6 .30) ,  since the p-terms make no contribution to this 
region. The solutions (6 .32) ,  (6.33) hold, and the asymptotic results (6.34) are 
valid. 

Region (ii) is slightly changed (the even-numbered regions are all changed, the 
odd-numbered regions are governed by original leading-order equations). 

p x po, 8 z ixT$n, x varies from 0 to  7c. 

regime, starting positive and ending negative. In  the H- case, 2 remains positive. 

x 5 . n .  

the H- case, 2 changes sign, being positive on entry and negative on exit. 

negative. In  the H- case 2 remains positive. 

as before, but 

du  
- = ap2+p2u-a2u3-b2up2 
dt 

(6.65) 

(6.66) 

The p - u  and p( t )  relations are again governed by (6.36), (6.37) and (6.38), as before. 
But now 

x - = T e x p {  A1 

aP0 
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As t + 0, the term in square brackets is O(t2)), so this expression matches onto ( 6 . 3 4 ~ )  
satisfactorily. But the extra term makes an important contribution to the t + 00 

behaviour, so (6.40) is replaced by 

where 

(6.68) 

as before. and 

exp(-2ar0t’) exp -2a(cr-cr0)+--- dt” dt’ 
cr t” ‘I 1 t‘ 4 2  

J ,  = lim S, __ 
t + m  P 

Like I,,  J ,  is a finite integral. The t+ CQ behaviour of p is governed by (6.41) as 
before. 

As t - t  00, it may be that pJ1 > Al/ap& in which case 2 changes sign. This occurs 
in the H, case. Alternatively, Al/ap; > pJ1 in which case 2 remains positive, and we 
are in the H- case. We cannot a t  this stage say which case we are in, as A ,  is not yet 
determined. It is interesting to note that it is the small changes in x (the changes are 
only O(E)) in the even-numbered regions that control the large changes in x in the 
odd-numbered regions. 

We now enter region (iii). An important question is whether the term 2/3 sin S / p  
should enter into the X-equation here. From (6.43), (6.44) and (6.45) we find that the 
minimum value of p,  

(6.69) 

so provided ,ul - b, cr; - ago < 0, which is a condition for the existence of a homoclinic 
orbit, p/p is of order a positive power of e and so the term 2/3 sin O/p does not enter 
into the 2-equation. This is fortunate, since O varies in this region, so the inclusion 
of the p-term would make the problem intractable. 

So region (iii) is governed by (6.42) and solutions (6.43) apply, except that in the 
H, case cotx/2 = -exp2acr,(t-cl) is the relevant solution, but we must match onto 
(6.68) rather than (6.40a), so 

c1 = -1 ln[ T$l($-bJ,)]. 
2acr0 

Equation ( 6 . 4 5 ~ )  still holds, but the altered value of c1 means that 

(6.70) 

(6.71) 

These values of c1 and c2 are the same order in e as the previous values, justifying 

With the revised values of c, and c2, (6.46) holds for t -c ,  --f CQ. The change in x 
to in fax,  

our neglect of the 2p sinB/p-term (and the quadratic terms in p ) .  

from x to x x in region (iii) is achieved by 0 changing by $x from $T T 
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as can be seen by comparing (6.636) with (6.42b). So we enter region (iv) with 
x = €2, 8 M $TT$. The governing equations in this region are 

- dP = p1p+aap-alp3- blpCr2, 
dt 

(6.72a) 

(6.72b) 
d a  
- = , ~ ~ ( ~ - a p ~ - a ~ ( ~ ~ - b ~ ( ~ p ~ ,  
dt 

( 6 . 7 2 ~ )  

As before, the p,  g-equations move from a M ( T ~ ,  p M 0 to (T M 0, p M po, according 
to (6.72a) and (6.72b). 

Solving for f gives 

where T is the semi-period, the time a t  which (T has its minimum value. T is 
determined by matching p. The constant K is determined by matching onto region 
(v). In  both the H, and H- cases, x is negative as we enter region (v). Since we have 
a periodic orbit, the minimum value of (T is the same in region (v) as region (i), so the 
entry to region (v) is governed by 

-€AI 1 
X“-- api T-t’ 

(6.74 a )  

a - c~pi  IT - tl. (6.746) 

Note that although on leaving region (iv) only half the orbit is complete, the other 
half is symmetric, so that a has the same minimum value in regions (i) and (v). So 
considering (6.73) in the limit t+T-, we have 

(6.75) 

since the second term tends to zero in this limit. Now we get a further matching 
condition by requiring that as t --f - co in (6.73) we match on the asymptotic form of 
2,  ( 6 . 4 6 ~ ~ ) .  From (6.73) and (6.75) we get 

x - exp{2ag0(T-t)} lim exp 2a(a-rO)--+- )dt’-h(T-t ,)  
t,+-ao a T-t‘ 

x (2+ t,+-m lim Jt:y (T - t’) exp { It: (@ (T - 2aa - L) T - t” dt”} dt’) 

- T 2 exp - 2acr0(t - c l ) .  (6.76) 
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- €Al IT4 
exp 2au0 T +I ,  J ,  exp 2au0 T = f 2 exp 2au0 cl, 

where 

(T-t’) d2 
exp [ - 2agO(T - t ’ ) ]  

x lim exp{ J’(%-2a(u-u0)- -  T - t” ) d1”}dt’. (6.77) 
to+-m t0 

We now have all the matching results we need to determine €Al in terms of P. 
Combining (6 .70) ,  (6.71) and (6.51) we get the semi-period 

(6.78) 

Inserting this in (6 .77) ,  and defining h = 2aa0/ (p1 + avo- 6 ,  ui) as before, we get 

(6.79) 

which determines €Al in terms o f  P. It is clear from this that A,  is an O(1) quantity 
as required; putting it another way, the minimum value of u, attained at t = 0, is 
O(P).  Note, however, from the above discussion that the minimum value ofp near the 
singular point u = go, p = 0 is not O(p)  but is O(pllA), somewhat larger. The period is 
W n  1/Ph 

In the H, case, we have the inequalities 

(6.80) 

These clearly imply that Jl ’ J 2  (6.81) 

and it is also clear that since h- 1 is positive there is a unique solution of (6.79) for 
A,  with cA,/api lying between PJ,  and pJ2.  

In  the H- case we have the inequalities 

(6.82) 

which imply that J ,  < J,. (6.83) 

Again in this case there is a unique solution for A,. 
The equations in region (vi) and (viii) are identical with those in regions (ii) and (iv) 

despite the change in sign in jj in these regions. This is because 8 has changed by 
in in these regions also, so (6.66) holds in (vi) and ( 6 . 7 2 ~ )  holds in (viii). This 
symmetry requirement determines 8, since it is necessary for sin8 to change sign 
when 0 is reduced by in. So 

sin 0 = -sin ( 0 - i ~ )  (6.84) 

giving 8 = an and 8 = in, which are the two cases H, and H- respectively. 
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FIGURE 10. The homoclinic orbit rendered periodic by an imperfection. p,  cr, 0 and 4 vs. time 
under system (6.63), (6.64) with a, = a2 = 1 ,  h,  = 6 ,  = 0, ,ul = 0.1, pz = 1.0, a = 10 and p = 

The question of whether H, or H- is the realized orbit depends on whether (6.81) 
or (6.83) holds. In  the large-a limit (i.e. the scaling of $6.2 applies) the integrals 
11-14 and J ,  and J ,  can be evaluated explicitly. However, in this limit J ,  = J,, and 
so the question of whether H, or H- is realized depends on the higher-order terms. 
I n  numerical experiments, solutions of both types were found. 

In summary, we have seen that the perturbation p has had the effect of resolving 
the degeneracy, giving a long (but finite) periodic orbit. The behaviour of p,  LT, 0 and 
q5 as functions of time are shown in figure 10, in a case where the orbit is of the H, 
type. 
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7. Conclusion 
We now consider the implications of the rich variety of behaviour a t  2 : 1 resonance 

on our physical problem. Although the formal mathematical results apply strictly 
only to a small domain where the two modes come in at the same Rayleigh number, 
it is likely that the qualitative behaviour described here will have a reasonably large 
domain of relevance, as is often the case with weakly nonlinear theories. This 
certainly appears to be the case in cylindrical convection (Azouni & Normand 1983 ; 
Jones & Proctor 1987), where spatial resonance phenomena have been observed in 
the laboratory. However, in the cylindrical case the wavenumbers are quantized, so 
that the possibility of approximate, rather than exact, resonance does not occur. In  
this plane-layer problem, however, near resonance rather than exact resonance is a 
possibility if the apparatus is sufficiently long in the horizontal direction. Inclusion 
of this effect turns the amplitude equations into partial differential equations, with 
the possibility of soliton solutions (Coullet 1986). Analysis of near-resonance 
phenomena will be dealt with in a subsequent paper. 

Perhaps the most remarkable feature to emerge from this study is the richness of 
the structure of the 2 :  1 resonance equations (5.1) compared to the non-resonant- 
interaction equations (1.2). We have concentrated in this paper on the case where the 
coefficients a,  and a2 are positive, as this condition obtains in the two-layer problem 
(see table 2) : thermal convection is a supercritical phenomenon unless perturbing 
influences such as rotation or magnetic fields are present. There are, however, many 
problems where spatial resonance can orcur that are subcritical, and for these a full 
analysis of (5.1) with a, or a2 negative would be appropriate. 

In  all cases given in table 2, there are domains in the (p,, p2)-plane where we expect 
to see the pure mode (convection only in the thinner layer), the two mixed modes, 
M, and M-, which represent steady convection in both layers, the travelling waves 
and the homoclinic orbit. The only qualitative difference in the two cases is in the 
stability of the modulated waves. In  the cases where G = 1 ,  so that simultaneous 
onset is achieved by having a more viscous liquid in the thicker layer, a2 dominates 
a, and so c = $(2a1-226, +b,-a,) is negative (see (6.28) and below): in consequence, 
the modulated waves are unstable near the origin and may well be unstable 
everywhere. In  the one-fluid case, however, a, dominates a2, so that c is positive and 
modulated waves have a domain where they form a stable state. We note that in an 
experiment, it may not, be easy to distinguish between a modulated wave an a 
homoclinic orbit rendered finite by imperfections (see 3 6.4). 

The existence of the stable homoclinic orbit is itself slightly surprising, as i t  exists 
not just a t  a particular set of parameter values, like, for example, the homoclinic 
orbit in the Lorentz equations (Sparrow 1982), but over a whole region of the 
parameter space. One has to add additional terms, i.e. embed the system (5.1) in the 
system (6.62), in order to lift the degeneracy. 

Although the two-layer model in Cartesian geometry is perhaps conceptually the 
simplest of problems involving spatial resonance, there are many other problems 
where the mathematics we have described is applicable. The step that involves most 
work is the calculation of the coefficients that  appear in (5.1). For problems involving 
cylindrical or spherical geometry this is a larger undertaking than in the Cartesian 
case. However, the analysis probably has considerable application in these 
geometries, as there are problems where there is a parameter range where azimuthal 
wavenumbers m = 1 and m = 2 onset near each other, and system (5.1) is 
appropriate. The problem discussed in this paper achieves 2 : 1 resonance by having 
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instability due to the same mechanism in two distinct but coupled layers. But it is 
also possible to achieve resonance in one layer when two different instability 
mechanisms are present, such as shear instability and convection. 
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